为什么发动机要配电脑系统,发动机为什么需要机油
1.汽车可以自检为什么还要用OBD盒子
2.发动机电脑(ECU)?
电脑引擎是计算机系统的发动机。电脑引擎是电脑发动机的核心部分,电脑引擎主要部件是气缸,也是整个汽车的动力源泉。电脑引擎中的气缸包括缸体、进气孔、输油孔、出气孔、活塞和火花塞。在电脑游戏的编写中,电脑引擎指用于控制所有电脑游戏功能的主程序。电脑引擎,就是用两个冲程的长度完成一个循环。在第一个冲程,两个程序一起进行,那就是进气和压缩。在第二个冲程,另两个程序一起进行,那就是燃烧产生动能和排气。
汽车可以自检为什么还要用OBD盒子
1、主电脑
主电脑指大的、功能很强的计算机。它不仅处理直接来自传感器的数据,而且还处理来自其他较小的、功能较少的电子控制模块等的信息。
2、仪表电脑
仪表电脑是一种小的电子控制模块。它处理来自传感器的输入信号,以控制仪表板的显示。
3、防抱死制动系统电脑
防抱死制动系统电脑是一种小的电子控制模块,它处理来自车轮传感器和其他装置输入信号,以控制汽车制动,防止汽车制动时车轮抱死。
4、点火控制电脑
点火控制电脑是处理来自有关传感器的输入信号,以控制火花塞点火时刻,保证点火正时的一种小的电子控制模块。
5、发动机电脑(ECU)
发动机电脑是集中处理来自许多传感器输入信号的计算机,肝控制发动机在各种运行条件下的怠速、燃油喷射、点火正时、排气等系统,使发动机性能优化。
6、悬架系统电脑
悬架系统电脑是一种用以控制车厢高度、悬架弹簧刚度、减振器的阻尼特性等小的电子控制模块。
汽车发动机电脑一般布置在汽车仪表板的下面这样布置可避免振动、潮湿、高温及其他因素对电脑的损害。
发动机电脑(ECU)?
大部分的OBD盒子都是一个保健医生的角色。大多OBD盒子可以实现远程检测(能够发现潜在问题,防患于未然)、跟车导航(路况通畅、定位、报警)、行车分析(某一段路程的用时及油耗)、油耗管理等功能。
有的OBD盒子还有社交、娱乐、HUD功能,这个就要看个人了,影响开车的事情还是要悠着点。益智星还有其他扩展功能,智能养护就很独特也很实用,通过连续数据采集、运用专利算法,计算出保养的节点,而不是直接按里程或时间来确定。
有些可以远程的啊,像欧必迪,你不在车上也能检测,增加你的使用范围了,而且这些盒子的功能不单单是检测,也能定位防盗。
扩展资料:
OBD车联网特点:
OBD车联网,主要侧重稳定性、及时性、智能性。
稳定性
主要体现在车载设备的工作能力上:不会引起车辆故障、不会大量耗费车辆的电池电量、在各种气温各种颠簸各种辐射环境中能正常采集数据、在移动网络失常时有补偿策略、等等。
及时性
体现在各类型用户获得信息时没有延迟,比如:孩子开车超速家长能立即知道、车辆熄火后驾驶者就可以得到本次行程的详细分析结果、4S店通过数据分析后尽快提示车主以避免麻烦、等等。
智能性
主要体现在数据的分析结果上,面对不同用户是可读的、准确的,比如故障码,提供给车主的不应该是那堆专业词汇,并且通过对多个故障码的联合分析,能告知车主故障程度及建议的解决方案(暂不影响使用、尽快修理、车辆不宜行驶等等)。
参考资料:
发动机电脑具有空燃比控制、点火正时控制、加减速控制、下坡断油控制、超速控制、怠速控制、空调控制等功能。当整车供电后,开始不断地定时检查各传感器及开关信号,并以此为依据,计算出发动机各工况下的最佳供油量、最佳点火正时、最理想的怠速等。经输出驱动电路完成对喷油器、点火组件、怠速直流电机和空调系统的控制。硬件组成及功能如下:
1) 输入回路:将系统中各传感器检测到的信号输入发动机电脑。
2) 模拟/数字转换器:将模拟输入的信号原形转换成微机能够识别处理的数字信号。
3) 微机:将各传感器送来的信号用内存的程序和数据进行运算处理,并将结果送至各执行器。
4)输出回路:将微机作出的决策指令转变为控制信号,驱动执行器进行工作。
控制系统中最主要的软件是主控程序,它主要负责对整个系统进行初始化,实现系统的工作时序、判定控制摸式、控制点火角度和喷油脉冲信号的输出等。软件中还有转速与负荷的处理程序,中断处理程序及查表程序。针对发动机使用要求预先确点火角脉谱及喷油量脉谱,以及其他为匹配各工况而选定的修正系数、修正函数和常数等,都以离散数据的形式储存在微机的存储器中。
2、曲轴位置传感器
曲轴位置传感器是发动机控制系统中最主要的传感器,是控制点火时刻(点火提前角)确认曲轴位置不可缺少的信号源。它安装在飞轮盘附近,如图所示。飞轮盘圆周上均匀分布着若干齿。发动机运行时,传感器不断检测飞轮上齿峰与齿谷间的变化,并转换成电压信号传给ECU。ECU根据该信号计算出发动机的转速并判断出活塞在气缸内的行程位置,进而控制喷油器开启时刻、燃油喷射量、点火正时、怠速和燃油泵等各项工作。
3、冷却液温度传感器
冷却液温度传感器安装在发动机节温器处,其结构如图所示,其温度感应元件为负温度系数的热敏电阻,温度越低阻值越大。冷却液温度传感器将冷却液温度的高低,转变成电信号,输出给电控单元,从而控制供油加浓量、点火正时和怠速转速。
4、进气温度传感器
进气温度传感器安装于进气管道上,是检测发动机吸入空气温度用的传感器。由于吸入空气温度的变化会引起空气密度发生变化,因此需要进行燃油喷射量修正。为使测量及修正精确,通常是将进气温度传感器安装在空气测量部位附近。进气温度传感器的输出特性与水温传感器相同。 ECU中的电阻与进气温度传感器串联,当热敏电阻的阻值随进气温度变化时,电压信号也随之改变。当进气温度低时(空气密度大),热敏电阻阻值增大,ECU检测到的电压信号电压高。根据此信号,ECU相应增加喷油量。反之,当进气温度高时(进气空气密度小),ECU检测到的电压信号电压低,ECU控制喷油量减少。
5、爆震传感器
爆震传感器安装在发动机缸体上,其内部是一个压电陶瓷片,一个惯性配重通过螺钉紧压在压电陶瓷片上,使之产生一定的预压力,如图所示。当发动机因燃油标号不足,缸内积碳过多,点火过早出现爆震时,产生1~10KHz的压力波;这一压力波通过缸体传给爆震传感器,又通过惯性配重,使作用在压电陶瓷片上的压力发生变化,产生约20mV/g的电动势;这一信号传输给电脑,经滤波后,再转换成指示爆震的数字信号。 ECU根据这一信号调整点火提前角,消除爆震。
6、氧传感器
氧传感器安装在排气管上,用来检测排气中氧气分子的浓度,结构如图所示。发动机运转时,排出的废气从氧传感器表面流过,在高温状态下氧分子发生电离。由于敏感元件3内外表面氧分子的浓度不同,因而使氧离子从浓度大的内表面向浓度小的外表面移动,从而在敏感元件内外表面的两个电极之间产生一个微小的电压,形成电压信号。排气中氧气分子的浓度取决于混合气的空燃比:当混合气浓于理论混合气(即空燃比小于14.7:1)时,在燃烧过程中氧分子被全部耗尽,排气中没有氧气分子;当混合气稀于理论混合气(即空燃比大于14.7:1)时,在燃烧过程中氧分子未能全部耗尽,排气中含有氧分子。混合气愈稀,排气中的氧分子浓度就愈大。因此,氧传感器发出的信号间接地反映了混合气空燃比的高低。电脑按氧传感器的反馈信号,对喷油量的计算结果进行修正,使混合气的空燃比更接近于理论空燃比。
7、燃油泵继电器
燃油泵继器安装在中央配电盒内,用于控制燃油泵的供电。点火开关打开时,该继电器在ECU控制下励磁,使电源向油泵和喷油器供电。若在2秒钟内ECU收不到曲轴位置信号,ECU控制该继电器失励,燃油泵停止运行。
8、主继电器
主继电器控制ECU供电。点火开关打开时,主继电器励磁,主触点接通向ECU供电。点火开关关闭时,ECU利用内部积存的电能使主继电器延迟失磁。3电磁线圈4蒸气出口ECU则利用这的时间将停车前现场数据保存到ECU的存储器中。
9、发动机故障警报灯
发动机故障警报灯安装在仪表板上,用来显示电控系统故障。点火开关打开发动机未起动时,故障警报灯应点亮;发动机起动后该灯应熄灭;若系统有故障,该灯不灭提示系统有故障。
实践证明火花塞绝缘体保持在500-600℃温度时,落在绝缘体上的油滴能立即烧去不会形成积炭,高于这个温度会早燃,低于这个温度有积炭。在不同发动机上的温度会不一样,设计者就利用绝缘体裙部的长度来解决这个矛盾。有些裙部短受热面积小,散热快,因此裙部温度低些,称为冷型火花塞,适用于高速高压缩比的大功率发动机;有些裙部细长受热面积大,散热慢,因此裙部温度高些,称为热型火花塞,适用于中低速低压缩比的小功率发动机。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。